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Experimental evolution studies demonstrate that pathogens
evolve rapidly, have a large capacity for increased virulence
and cause disease in many different ways. A large proportion
of genetic diversity for host susceptibility to infectious,
autoimmune and ‘genetic’ diseases, and to cancer, is probably
caused by pathogens and/or host counteradaptations. Recent
advances in diverse fields support this claim and suggest many
underused approaches for identifying and experimentally
dissecting the complicated host–pathogen interactions that
often lead to disease.
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Abbreviations
ATL adult T-cell leukemia
CTL cytotoxic T lymphocyte
HSV herpes simplex virus
HTLV human T-cell leukemia virus

Introduction
Pathogens evolve rapidly and they are usually up to no
good, at least from the host’s perspective. Although this
statement is not controversial, the breadth and importance
of pathogen adaptation are often under-appreciated.
Pathogen adaptations are often demonstrably negative for
the host but, more often, the negative consequences to
hosts are cryptic, poorly understood or assigned a non-
pathogen etiology altogether. This review summarizes
recent advances in pathogen-mediated disease and
attempts to classify the myriad of disease consequences of
pathogen adaptation. We also develop two case examples
involving autoimmunity and cancer that help highlight this
important, but difficult, area.

Experimental pathogen evolution
The best evidence for rapid pathogen adaptation to hosts
comes from the accumulating body of experimental work
involving serial-passage studies. Ebert [1] reviewed 43 
serial-passage studies involving diverse infectious agents
and documented the following four major patterns: first,
virulence increased in 23 out of 24 studies (96%); second,
pathogen fitness increased in 9 out of 9 studies (100%);
third, pathogen growth rate increased in 15 out of 15 studies
(100%); and fourth, pathogen virulence to a former host
decreased in 32 of 34 studies (94%). These results are 
profound because they demonstrate that rapid pathogen

evolution must be occurring in natural populations and
that it is almost always negative for current host species.
However, virulence attenuates in former host species, 
presumably due to costs and tradeoffs associated with
pathogen adaptations. This pathogen-driven selection will
favor counteradaptations by the host and a never-ending
molecular ‘arms race’ will ensue [2•].

Pathogen adaptation occurs so rapidly during passage that
it can be used to experimentally identify molecular and
functional changes occurring at the host–pathogen inter-
face. Surprisingly, it has seldom been used this way
because most passage studies were conducted to either
develop an attenuated pathogen for use in vaccines or to
adapt a pathogen to an animal model. A few recent studies
have been used as an experimental tool to understand
pathogen adaptation. Influenza passaged 12 or 20 times
with three-day cycles increased in virulence by four or five
orders of magnitude, respectively, as measured by LD50
[3•]. Genomes of post-passage virus were sequenced and
14 amino-acid substitutions were identified. These substi-
tutions were found in 8 out of 10 influenza genes and
influenced a variety of functions, including nuclear local-
ization signals, sites of protein and RNA interaction, and
pH optima of fusion. The first two functions represented
previously unknown modulators of virulence and highlight
one of the powers of this approach — selection experi-
ments can be used to identify the molecular sites of
important host–pathogen interactions.

A similar approach was used to identify substitutions that
confer neuroadaptation of yellow-fever virus [4]. Several
recent studies have also used serial passage in vitro to 
identify genetic changes that account for the resulting
attenuation of virulence in vivo for Japanese encephalitis
virus [5], Staphylococcus aureus [6], yellow-fever virus [7]
and Toxoplasma gondii [8]. In vivo readaptation of an
in-vitro-passaged strain of feline immunodeficiency virus
(FIV) led to characterization of viral sites responsible for
resistance to antibody neutralization [9]. If sexual repro-
duction is possible in the pathogen, it can be used to
speed-up evolution, as has been shown in T. gondii [10]. In
short, serial-passage methodologies are powerful but underused
approaches both for dissecting host–pathogen interactions
and for directed evolution to produce pathogens optimized
for gene therapy or vaccine strategies [11•].

Pathogen adaptation to host genotypes
Many of the diseases discussed in this review require that
pathogens adapt to different genotypes within the same
host species. Although this is a common assumption, serial-
passage studies provide little supporting data because most
involve passage through a new host species. Some of the
best evidence for host-genotype-specific adaptation comes
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from recent studies where pathogens from two host 
populations are reciprocally transplanted. Such studies in
trematode parasites of snails [12•] and a bacterial pathogen
of Daphnia [13] show that these parasites are better adapted
to their own local host genotypes. Another clear example of
host-genotype-specific adaptation is the evolution of viral
variants that escape MHC-dependent immune recognition,
as demonstrated in HIV, simian immunodeficiency virus
(SIV) (reviewed in [14]), human T-cell leukemia virus
(HTLV) [15•] and hepatitis C virus [16] (see also Update).

Despite these examples, it remains to be demonstrated
whether the strong and rapid adaptation that emerges in
serial-passage studies between two species will also occur
between two genotypes within a host species. This is a 
particularly important problem for vertebrate hosts, because
one could argue that most pathogen evolution may be
directed toward escaping the adaptive immune response,
where the effector/recognition molecules are largely 
generated by somatic mechanisms. A recent genome scan
for positively selected amino acid sites in hepatitis C virus
uncovered 13 such sites, 8 of which were B-cell epitopes
[17•], indicating that most of the detectable positive selection
operating on this virus resulted from somatically generated
host antibodies. Approximately half of the genetic variability
for susceptibility to infectious disease is MHC related [18],
suggesting that MHC-, T-cell- and B-cell-mediated immunity
is a focus of host–pathogen evolution. Still, half of the
genetic variability for susceptibility to pathogens involves
non-MHC germline diversity.

Evolution of antibiotic resistance and
compensatory mutations
The evolution of antibiotic resistance is a powerful experi-
mental model for studying pathogen adaptation to a host
phenotype. In general, antibiotic resistance evolves rapidly
and usually reduces microbe fitness. The big surprise has
been that when the antibiotic is removed, compensatory
mutations usually restore microbial fitness without the loss
of antibiotic resistance [19•]. The general explanation seems
to be that there are simply more compensatory than 
reversion mutations. These findings suggest that evolutionary
solutions may be less limiting than previously thought, 
making pathogen adaptation to both antibiotics and host
defenses an even bigger problem. Analogous compensatory
mutations have recently been reported in influenza [20],
herpes simplex virus (HSV) [21], hepatitis B virus [22] and
possibly in HIV, where escape mutations persist long after
selection favoring them is eliminated [23] (see also Update).
Such host-genotype-specific adaptations should favor host
genetic polymorphisms [2•,13]. As discussed below, there
seem to be an abundance of such host polymorphisms.

Why is there so much genetic variation for
susceptibility to infectious disease?
One is struck by the staggering genetic variability associated
with susceptibility to infectious disease [24]. Because of
the importance of infectious disease, one might predict

just the opposite; susceptible genotypes should be 
eliminated. If susceptibility alleles persist, it is probably
due to one of two possible mechanisms. First, alleles that
are effective against one pathogen might be ineffective
against another pathogen or for some other function 
(antagonistic pleiotropy), resulting in a stable polymorphism.
Sickle-cell hemoglobin is a classic example. The second
possible mechanism is that pathogens are rapidly evading
host defense genes, causing host counteradaptation. Such
antagonistic coevolution can maintain host polymorphism
due to negative-frequency-dependent selection. Common
host alleles are the primary targets of pathogen evolution,
which gives a disadvantage to these alleles and an advantage
to rare host alleles. Polymorphisms are maintained because
of this frequency-dependent selection [2•,13]. This process
seems to account for the protein polymorphisms of the CCR5
gene that confers susceptibility to SIV in African green
monkeys [25•], as well as susceptibility to HIV in humans.

Both of these mechanisms are examples of host counter-
adaptations resulting in disease and both have been used
to explain polymorphism of MHC genes, where demon-
strably ‘bad’ genes that confer susceptibility to one or more
diseases have been maintained for large periods of evolu-
tionary time. But what about non-MHC genes? Estimates
indicate that about half of the host genetic variability for
resistance to infectious disease is attributable to non-MHC
genes [18]. Many of these genetic polymorphisms will
probably be maintained by one of these two mechanisms
and consequently will contribute to lowered host fitness
(decreased disease resistance) under some circumstances.

‘Immune’ genes evolve rapidly
If molecular arms races exist between pathogens and host
defense genes, then these immune system genes should
show signs of rapid protein evolution. They are among the
fastest-evolving genes [26,27] as assayed by comparing
rates of non-synonymous substitution across entire genes.
This assay underestimates the rate of evolution for two
reasons. First, positive diversifying selection only acts on a
small proportion of sites. Second, identifying actual host
defense genes is difficult. For example, a recent gene-
expression study found that many genes not thought to be
‘immune’ genes were upregulated during infection [28•].
These genes, however, can still be targets of pathogen
adaptation and so will be incorrectly categorized as ‘non-
immune’ genes. Scanning genes for amino acid sites
showing positive selection can be useful for identifying
genes important to host–pathogen coevolution [17•,29,30].

‘Genetic diseases’ that are not rare (>>1%) are
likely to have pathogen involvement
Genes that cause disease should be eliminated by natural
selection, yet there are many important, non-rare disease
genes [31]. What is maintaining these bad genes? Recently
Cochran and coworkers [32•] have argued that such ‘genetic
disease’ genes are likely to have a cryptic pathogen etiology,
thus offering a solution to the paradox of the persistence of
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seemingly ‘bad’ genes. Cochran and coworkers developed
the concept of ‘fitness load’ that takes into account both
the severity and prevalence of each disease. For example,
a disease that was found in 1% of the population and
reduced the fitness to 80% of wild type would have a fitness
load of 0.01 × 0.8 = 0.008. The goal was to discriminate
between diseases that can be explained by recurring mutations,
versus those that cannot. All diseases with a fitness load
greater than 0.01 and known etiology have pathogen
involvement. On the basis of this analysis and other argu-
ments, the authors conclude that the many diseases with
high fitness load (>0.001) and obscure etiology are likely to
have pathogen involvement. Such diseases include athero-
sclerosis, endometriosis, polycystic ovary disease, breast
cancer, cerebral palsy, endomyocardial fibrosis, juvenile
diabetes (insulin-dependent diabetes mellitus [IDDM]),
pre-eclampsia, eclampsia, rheumatoid arthritis and schizo-
phrenia. Because fitness is difficult to measure and
generally underestimated [33], it is likely that many 
diseases with fitness loads >0.001 will also be caused by
pathogens, rather than mutations.

Pathogens and autoimmunity: molecular mimicry
If pathogens mimic host T-cell antigens, they might evade
some immunity because self-tolerance mechanisms elimi-
nate or anergize relevant T cells, but such mimicry could
lead to increased host autoimmunity [34]. Four critical
lines of evidence support the molecular-mimicry hypothesis
for initiation and/or exacerbation of autoimmunity: first,
epidemiological studies associating various pathogens with
particular autoimmune diseases [35•]; second, sequence
and structural homology between many pathogen peptides
and self proteins (reviewed in [36]); third, isolation of
T cells from autoimmune patients that are cross-reactive
with both self and pathogen-derived peptides; for example
T cells that are cross-reactive with B4 Coxackie virus and
GAD have been isolated from patients suffering with
IDDM [35•,36]; and fourth, experimental mouse models
of autoimmune disease (reviewed in [37–39]).

Mouse models demonstrate that molecular mimicry of
T-cell epitopes by pathogens can supply the specific anti-
genic signal to break tolerance in cross-reactive T cells:
first, it has been established that some autoreactive T cells
to a specific self antigen expressed in the thymus can
escape central tolerance and be activated in the periphery
(reviewed in [37]); and second, transgenic mice that
express viral antigen as a self protein and therefore possess
autoreactive T cells in the periphery do not develop overt
autoimmune disease until infected with the virus [39].
Recently it has become clear that autoimmunity due to
molecular mimicry may be exacerbated because T-cell
specificity is far more degenerate than was generally
believed; this mechanism appears to contribute to the
probability of cross-reactivity [40,41].

Some of the most compelling evidence linking autoimmune
disease with molecular mimicry comes from the mouse

model of herpes stromal keratitis (HSK). HSK develops in
mice infected with HSV-1 because autoreactive T cells
target corneal tissue. Infection of susceptible mice with
HSV-1 lacking the putative mimic epitope fails to induce
disease [42•]. Autoimmune disease also failed to develop
when the cross-reactive epitope was present but was
altered, suggesting that molecular mimicry was essential
and mere tissue damage or inflammation was not sufficient
for induction of autoimmune disease in animals with low
numbers of autoreactive T cells. By contrast, when infected
with the altered epitope, disease did develop in TCR-
transgenic mice (with high numbers of autoreactive
T cells) that only recognize the ‘wild’ mimic epitope.
Taken together, these data suggest that molecular mimicry
may be crucial for development of HSK in individuals
where numbers of autoreactive T cells are limited [43•].
Similar results have been found in a transgenic model of
diabetes induced by infection with lymphocytic chorio-
meningitis virus (LCMV) [44].

Although molecular mimicry as a direct cause for develop-
ment of autoimmune disease has received much attention
and been reviewed extensively [36,40,45,46], no model
system provides definitive evidence. More experimental
work is needed where the mimic molecule is altered or
removed in both pathogen and host. Such experiments
would help determine if pathogens gain an advantage 
during molecular mimicry, an idea that has largely been
ignored in experimental work since the original formula-
tion of the molecular-mimicry hypothesis. One humbling
conclusion emerges; the immune system is complicated
and each infectious agent presents many novel differences.
Experimentally disentangling the myriad of interactions
leading to autoimmunity will be a major challenge.

Pathogens and cancer
Not too long ago, tumorigenesis was never thought to have
an infectious etiology, but recent evidence suggests that
pathogens cause 15% of all human tumors [47•]. Examples
of associations include: first, hepatitis C and hepatocarcinoma
(reviewed by [47•]); second, papillomavirus and cervical
cancers (reviewed by [48]); third, Epstein–Barr virus and
both Burkitt’s lymphoma and nasopharyngeal carcinoma
(reviewed by [4,49]); and fourth, HTLV and adult T-cell
leukemia (ATL) (reviewed by [47•]). It is interesting to
note that almost all of these infectious agents also cause an
acute, often more-benign disease and only rarely result in
cancer. For example, papilloma viruses usually cause warts
and Epstein–Barr virus usually causes infectious mono-
nucleosis, but occasionally they are associated with the
cancers described above. Although both DNA and RNA
viruses have been implicated in carcinogenesis, the mecha-
nisms resulting in transformation are different. DNA
tumor viruses generally target cellular suppressor genes
and their products, whereas RNA tumor viruses, almost
exclusively retroviruses, either encode viral oncogenes or
insert themselves near a critical proto-oncogene. The 
unifying theme is that infection with tumor viruses alters
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cell cycle controls (in the case of DNA viruses this is 
critical for their replication) and infection occasionally
results in transformation.

A particularly clear example of pathogen adaptation resulting
in cancer involves HTLV-1, which is associated with 
either myelopathy/tropical spastic parapesis (HAM/TSP)
or ATL [15•]. HLA-A*02 patients usually have low proviral
titers and are protected from HAM/TSP but despite this a
number of HLA-A*02 HTLV carriers do develop ATL.
The immunodominant cytotoxic T lymphocyte (CTL)
epitope is derived from viral transcription transactivator
protein (Tax) and the viral populations isolated from these
patients have mutations in this protein. The majority of
these mutations prevent expression of Tax, which renders
HTLV invisible to the host’s CTL response, but also 
significantly impairs HTLV’s ability to replicate. This
tradeoff explains why Tax-mutant viruses never come to
predominate viral populations in these patients. Thus,
escape from CTL response comes at a high cost to the
virus, yet these mutations are still selected for, as indicated
by the high dN:dS ratio in Tax [50], and appear to 
contribute to ATL.

Classification of diseases resulting from
pathogen adaptation
Table 1 organizes major categories of disease resulting from
pathogen adaptation. Recent examples or reviews are included.
Many categories are not mutually exclusive and many 
examples treated in this paper may fit into more than one
category. Since host counteradaptations involve most aspects
of host physiology, we have not provided subcategories for
this category because the list would be too extensive.

Conclusions
Advances in many fields indicate that pathogen involve-
ment in disease processes is more pervasive than generally
appreciated. Pathogen adaptation to host defenses and
host counteradaptation are important for understanding
and/or preventing disease processes including infectious,

autoimmune, genetic and emerging disease, and cancer.
Experimental pathogen-evolution studies can be used to
identify the pathogen and host genes involved in antago-
nistic interactions. They can also be used for practical
applications such as production of ‘designer’ pathogens for
gene therapy and vaccination vectors.

Update
Moore et al. [59] searched for correlations between HIV
polymorphisms and HLA genotype in 473 HIV patients.
They found 64 significant correlations, which indicates
that HIV is adapting to specific host (HLA) genotypes.
These HLA-associated HIV polymorphisms were a strong
predictor of viral titers, suggesting that the polymorphisms
were pathogen adaptations resulting in increased viru-
lence. Only 21 of the 64 mutations were associated with
known class I epitopes and these are thought to function
by escaping HLA-dependent immune recognition. The
authors suggest that the other 43 associations could be
associated with unknown epitopes. An alternative possibility
is that some of these polymorphisms could be mutations
that compensate for defects caused by an initial HLA escape
mutant. This correlative study provides evidence for antag-
onistic coevolution that maintains polymorphisms in both
pathogen and host through frequency-dependent selection.
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